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The problem of detonation of one quarter of a space filled with explosive and 
initiated on one of the faces is examined. The finding of the solution in the per- 
turbed region is reduced to the solution of Goursat’s problem for a quasi-linear 

differential equation of second order with two independent variables. This prob- 

lem is solved by the numerical method of characteristics. An examination of 

singular points is presented. The solution in the perturbed region and the form 
of the free surface are obtained. 

The problem of gas motion behind an expanding detonation wave in a space 

with a conical cutout was examined in papers [l. 21. 

1. Let us examine the infinite region 

Zl> 0, 2, < 0 for t < 6 (i-1) 

filled with immovable explosive of constant density PO- The pressure p in the entire 
space is equal to zero. 

It will be assumed that the products of explosion are described by the following equa- 
tion of state 

P - 7P’S 

At the instant of time t = 0 the explosive is initiated on the surface z1 = 0. A plane 

normal detonation wave, which is orthogonal to the free surface z1 = 0 propagates with 
the constant velocity D = y + 1 from the plane of initiation z1 = 0 

2. For t > 0 the motion is self-similar with the following independent variables 

Ei = x,/t, E2 = x,lt (2.1) 

The straight line & = D corresponds to the front of the detonation wave. Behind the 
wave front the gasdynamic parameters assume the following values 

u1= 1, u2 = 0 ( p=l, c=y P.2) 

where u1 and us are components of the velocity vector, c is the speed of sound. Far 
from the straight line & = 0 in the region 

-Dl(y - 1) < Ei < D 
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the motion is one-dimensional 

T-1 ul_E_(f,_~), ua=oOI c=Tj-w++ 

The straight line E1 = -D I (y - 1) corresponds to the plane front of exhaust into vacuum. 
In the vicinity of the line Es = 0 the one-dimensional motion (2.3) is perturbed by a 

centered wave of expansion (a Prandtl-Meyer wave) emanating from the point A (El = D, 

Ea = O).The region of perturbed flow (1) is separated from the region of one-dimensional 

flow (0) by a weak discontinuity passing through the points A and Z? (E1 = -D / (V - 1). 
Ea = O).This discontinuity can be found by solving the differential equation for the chara- 

cteristics of one-dimensional flow (2.3) 

d& 4a2-- ca 
zg=- 2knc (2.4) 

The function e (Et) must be taken from (2.3) 

D 
c = P% + yfl 1 

y--1 ‘12 

p=(m 1 

Integrating (2.4) we find the boundary characteristic for y # 3 

(2.5) 

6, = - (2.6) 

In Eq. (2.6) the “minus” sign is taken because it must be that Ez < 0. The constant in 
(2.6) is selected from the condition ES = 0 for E, = D.The function c (f,) is determined 

from (2.5). From Eq. (2.6) it is evident that the boundary characteristic passes through 
the point B,where c = 0. For y = 3 we obtain instead of (2.6) 

ca = - c 
C 
- 2 In $- [I’ (2.7) 

Equation (2.7) can be obtained from (2.6) by passing to the limit for y - 3, therefore 
the case y = 3 is subsequently not treated separately and it is assumed that the passage 
to the limit is possible. 

In the point A the boundary characteristic has an infinite slope, i.e. it is tangent to 
the detonation wave. In the point B the slope depends on y. For y < 3 in the point B 

dE$& = - P/VT (2.8) 

For y >, 3 the boundary characteristic has infinite slope, consequently it is tangent to 
the boundary with the vacuum & = -D / (y - 1). 

In the point 121 the function (2.6) has a minimum, here 

4, = - Y$ + 27 (2Ps)tW Ea = - r (2P.2)“T 

In the point A region (1) adjoins the Prandtl-Meyer expansion wave 

(2.9) 

112 = ‘(a sin a -- ,;b sin 
( 1 
-p a , b=+.(f -ij (2.10) 

c=:cos (&) (0 d e G nb) 
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Here (r is a parameter. For a = 0 we obtain from equations (2.10) the values of quan- 
tities behind the front of the detonation wave (2.2). For a = nb the speed of sound be- 

comes zero. 
The perturbed region (1) is closed by the curvilinear front of outflow into vacuum. 

This front passes through the points A and B. 

3. The solution in the perturbed region is obtained as a result of interaction of two 
simple waves (2.3) and (2. lo), therefore it represents a double wave [33. Simple and 

double waves are generalizations of Riemann waves to the multidimensional case. The 
function c = c (u,, u2), which connects the speed of sound with the speed of the material, 
satisfies the quasi-linear differential equation of the second order 

%2 (‘pi1 + 1) - %z% + 011 (922 + 1) = 0 (3.1) 

Here C4 
(p=r_l’ r&=2, 

a2q 

i 
‘pii = - 

al+ j (3.2) 

aij = qifJj - C28ij (i, j = 1,2) 

If the function c (ui, u.~) is determined from Eq, (3.1). then the solution in the plane of 
self-similar variables &g2 is found from the following relationship: 

Si = ‘i + ‘Pi (i = 1, 2) (3.3) 

In Eq. (3.1) we make a substitution of’variables 

5= -+a,), y=+.. 
C --i 

.z=--- 

T ( 
d-y) (3.4) 

Computing the derivatives of function.v (lti, u2) from (3.4) and substituting them into 
(3.1) we obtain the equation 

(zy2 - 1) zxx - 2ZXZ1/ZXV + (z32- 1) zyy= $ [2 + z (2 - zx2 - ZJ] (3.5) 

Instead of relationships (3.3) we have 

G = i- +I (+ + azx) 9 (3.6) 

Conditions of contiguity of the double wave to the one-dimensional flow in region (0) 
give y--o, z-i-x, zx = - 1, 2” = - 0 (z) (3.7) 

e (z) = $ {$ [i - (1 - z)T]Y (3.6) 

From the condition of contiguity to the centered simple wave (2.10) we obtain 

x=k acosa-bcos 
[ (%a) -11 (3.9) 

Y =k 
I 

asina-bsin $$ 
( 11 (0 <I Gab) 

,'=cos -g 1 
( ) 

I (i+ q, zz=-7. y-s 

Derivatives cx and ‘zv in (3.9) are determined from Eqs. (3.6) after substitution of 
values k, = y + 1, E2 - O.The problem of finding the solution in the perturbed region 
is reduced to the solution of Eq. (3.5) with conditions on characteristics (3.7) (3.9). 
The discriminant of equation (3.5) 
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\ 6 = 32 + z;J - 1 (3.10) 

is everywhere on determinants (3,7), (3.9) greater than zero, with the exception of the 
point 5 = y = 0, where zy = - 1, at, = 0,i.e. 6 = 0. In this point the characteristics 
which carry the initial data are tangent with each other. 

4, For determination of the function a (CC, y) the problem of Goursat is obtained. The 
region of integration in the xy -plane represents a curvilinear triangle A”, B”, Co, the 
vertices of which have the coordinates 

z = 0, y = 0, x= 1, y = 0, x=x07 y=yo 

The values 4, y,, corresbonding to the point Co, are computed from Eqs. (3.9) for 
a = nb 

km kn n 31 
xi, =- -k, (4.1) 

P y”=--F- i 
m=sinq’ n=CoSq 

) 

In the following it will be assumed that y > 1.25, then n < 0. In the vicinity of point 

A0 on characteristics (3.8) and (3.9) the following expansions are applicable: 

p--1-- 
P 

hl Y* a1 Al---, 
4 $0 

z J---2, fZ1=- (4.3) 
II k 21” 3 

Let us examine the behavior of the solution of the Goursat problem in the viciniq of 
the point A’. We assume 

J+ = h;ryz-‘lz (4.4) 

and look for a solution in the form 

z=i--x--, 2; * (A) (4.5) 

The values of the parameter h = 0 and h = 1 correspond to characteristics (4.2) and 

(4.3). Differentiating (4.5) with respect to I and y, we find 

zX=- i- x II” (9 - s/4N’)* zy=-C$ (4.6) 

Substituting (4.5) and (4.6) into (3.5), (4.2) and (4.3) we obtain for the function 9 (A) 
the following differential equation: 

?jY (9 - ha) - I/&‘= + hlj? - 8Js (4 - i) = 0 (4.7) 

and the boundary conditions 

9 (0) = 0, 9 (0) = a17 9 (1) = 1, $‘ (1) = 9 (4.8) 

The expansion of the solution of Eq. (4. ‘7) in the vicinity of the singular point h -= U 
has the form 

* = a& - a& ‘ia - a&s - a&ii* - . . . . (4.9) 

aa = I,$ (l + 6aP j aP), ~-5~~~1(i+Sa8)a9ful,.... (i.10) 
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Coefficients of the series (4.9) depend on the arbitrary parameter a, > 0, which is de- 
termined in the numerical integration of Eq. (4.7) from the condition that the solution 
passes through the second singular point h = 1. As a result of numerical integration we 
obtained as = 0.6105. For small h we obtain from (4.4). (4.5) and (4.9) the following 
expansion 

s = i - 3 - p-l& y + i - Z-%y’l% 
3py 

(4.11) 

In the vicinity of the point h = 1 the expansion for q has the form 

91, = 1-0.34 (1 - h)% (4.12) 

In the vicinity of the characteristic f/ = 0 we shall seek a solution in the form of an 
expansion in powers of y 

S=l - .Z - ye (Z) + 9”‘” F (X) (4.13) 

The expansion (4. II) represents the limiting case for expansion (4.13) when z tends to 
zero. Therefore we must have for F (2) 

1 
lim F (5) x1!’ = - 
x-+0 311’1” 

(4.14) 

We substitute (4.13) into (3.5) for F (x) and obtain the equation 

F’ 1B’ z 
-=- -__- 
F 2 6 i-x (4.15) 

iterating (4.15). we find 

1 
F (x) = q- 0+ (i - x)’ 

The constant of integration in (4.16) was determined from the relationship (4.14). For 
z = 0 we obtain from (4.13) the form of the boundary with the vacuum in the vicinity 
of the point B”: 

for y < 3 y--p JG(i--2) (4.17) 

for y=3 Y = (1 - X) l-2 In (1 - z)I-“’ (4.18) 

for r>3, -i<Z<O y = p -r/_z (1 - #-‘j.7 (4.19) 

For y >, 3 the boundary with vacuum is tangent to the characteristic y = 0 and in the 
point B” it has infinite curvature. In the vicinity of point B” the quantities zzx and 
8211 / Y, computed from (4.13), tend to zero, so that we obtain from (3.6) 

x = k(i - 61) /TV Y = &z/r (4.20) 

Substituting (4.20) into (4.17) - (4.19). we obtain the asymptotics of the free boundary 
in the vicinity of the point B. 

5. Let us examine the behavior of the solution of the problem (3.5) (3, ‘I), (3.9) in 
the viciniry of the point C’. Eliminating a from (3.9) we obtain 

z = k-‘11 f k (k + 1) - (k + x)a - $,pl” (SS) 
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For (3.9) in the vicinity of the point C” we can write 

m 
y-g, = -;-(x-r:,) + L;=q 

_tL'L" 

the expansions 

The expansion for * is obtained from (5.1) taking into account terms of second order 
in smallness in (5.2). 

We shall seek solutions of Eq. (3.5) in the vicinity of point C’ in the form 

For the expansion (5.2) the quantity 5 y-= 1. For derivatives of : with respect to s and 

y we have 

(5.(i) 

Substituting the function z from (5.4) into Eq. (3.5), we obtain a differential equation 
of second order for the function / 

(1 + .i’) i” _/_ :!!’ (i _ ~,“) _/_ ~~’ = 0 (1.7) 

From Eqs. (5.3) we find the boundary conditions 

r’(l) = 1. 1’ (j \ = i + ‘/:: (.i.S) 

We always have the value/’ (1) > 11 because T > -- I. The function / (;, must be such 
that for some6 = j,, < 1 it becomes zero. In the vicinity of point < = 1 the following 

expansion is valid for the function : (.) 

j zzz I /. (1 + ::LT j (; - 11 (5.9) 

For r = 0 this gives the exact solution for the problem (5.7) (5. 8). For small x Eq. 
(5.9) can be regarded as an approximate solution. In this case the value LI is approx- 
imately equal to i:..>r. for T = (1. k., = (1. 

From relationships (3.6) we find i, and ;? for the solution (5.4) when .r = I,) 

5, = I, 2; (,I - qlL,i,/‘), .EJ = - _ $ (1 _ .$“j/‘) (5.10) 

Eliminating I/’ from (5. lo), we obtain 

;:= (;, - /) j I, / I’! (.-L11) 

It follows from this that the point (’ in the plane G,t2 transforms into a section of stra- 
ight line (5.11) which is confined between points A and C’. The coordinates of point 
C are computed from (5.10) by substituting ; = ;,. The neighborhood of point I’ 
transforms into the neighborhood of the straight line (5.11). For single-valued behavior 
of representation (5.10) it is necessary that the quantity /j’ be a monotonic function 
of j in the interval (1, Co). 

If we assume in (5.7) and (5.8) that 
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then we obtain the following problem for function g (5) : 
0 

g r, = -$&-& (&’ - g - )c) (x = q =; *;, (5.13) 

g (1) = r/8, g’ (1) = 1 + l/g% 

From (5.13) it follows that we have for f; = i 

g’>O, g” > 0 (5.14) 

It will be shown that conditions (5.14) are satisfied everywhere in the interval (i, fo) . 
The solution of problem (5.13) can be found in quadratures 

1 
?=I?I?ii;;,+I g 

(5.15) 

C = (g + x) (5.16) 

(5.17) 

(5.18) 

The function0(x,g)> 0 for all g > 0, therefore Z (x, g) 2 0. We substitute (5.16) into 
(5.13) and obtain 

Qg’* -- 
g”= g (i$2g) 

(5.19) 

It follows from (5.15) and (5.19) that conditions (5.14) are valid everywhere in the in- 
terval (i, E,o) . This indicates that f and jj’ are monotonic functions. 

We substitute (5.15) into (5.16) and obtain the equation (5.20) 

6 (x9 b-1 = 0 + (g. + x) (If -+ 
1 + ‘/2t 

(5.20) 

The integral (5.17) is taken in elementary functions only for 

y= 3, y = i + l/(N + I), N = 0, 1, 2, . . . 

For example, for x = 0 (Y = 2) 

V/z 
6 (9, d) = -?j- 

[ ( 
r+g fZ+1*“- 

v2+1 ln +&)I 

r = (1 + 2g)“2 

(5.21) 

(5.22) 

From here Lo = 5 (0, 0) = v/2/ 3. Integrating I by parts and taking g = o in (3.20). 

we obtain for arbitrary x 

Differentiating 60 with respect to x, we find 

(5.24) 

Setting s =- 2g / (‘A i- 9) in (5.23). we obtain the estimates 
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1 dR 
-(Xf1)“e- 

(s.25) 

Utilizing (5.25) and (5.26). we find from (5.24) that d&J dx > 6, i. e. &J (x) is a mono- 
tonically increasing function. From (5.25) we can obtain an approximate equation for 
the computation of c,, (for x > -0.6 the error is less than 2%) 

We can show that &, ---f - 00 logarithmically for x + --1. 
The curve I = 0 in the vicinity of the point C“ has the form 

y-yo= +- 50) + g-i (3 - d2 

i. e, it is tangent to the characteristic (5.2). For y = 3, 5, = 0 the line I = 0 in the 
vicinity of the point c” is also a straight line. For y # 3 it has a curvature different 

from zero. For y < 3 the curve I = 0 lies in the region between the characteristic 

(5.2) and the tangent to the characteristic in the point c”. For y > 3 the curve is out- 
side this region. 

From (5.10) we calculate the coordinates of point C 
m -fn 

4 10 = D + y &o, t&o= --[[1-2pg’(x, O)] 
CL 

(5.29) 

For X > 0 the derivative g’ (x, 0) = x / c,.For x < 0 it is equal to zero. Utilizing Eqs. 
(3.6). we find that the line (5.28) in the plane E,&, transforms into the curve 

m kb 
52 - Eao = - y (El - 410) + G a (Cl - Ed2 

In this manner the line for the level a = 0 in the vicinity of the point C consists of two 
pieces of orthogonal curves (5.11) and (5.30). 

6, The problem of Goursat for the Eq. (3.5) was solved by the numerical method of 
characteristics. In all node points of the region A”BoCo the values of 2, Y, a, IX and 5 
were computed. The calculation was started from the point A’. In the first calculation 

point the values a, zX and 5 were computed from Eqs. (4.5) and (4.6). Through this 
point a characteristic of the same family as the characteristic A”B” was drawn. For 

small y this characteristic has the form 
y=eo/e (0, = const) (6.1) 

For computations on the characteristic (6.1) the expansion (4.13) was used. All subse- 
quent points were computed by the method of characteristics. In the vicinity of the 
point Co the method of characteristics gave low accuracy. Here the solution was obtai- 
ned with the aid of expansion (5.4). 

As an example we present the results for y = 3. In this case I = 9 is the density of 
the gas 

m = 0.796, n = -0.606, z0 = 0.125, y, = 0.857, &, = 0.624, iw = 2.57 (6.21 
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The line for the level P = 0 in the vicinity of the point e0 is the straight line 

y-&)=1.314(5-~0) (6.3) 

The region of integration in the sy plane is represented in Fig. 1. The transformation 

p=o .I/1 i 

a" L?” 

s / 

Fig. 1. Fig. 2. 

to the E1& plane is accomplished with the aid of Eqs. (3.6). The flow picture in the 

plane of self-similar coordinates is shown in Fig. 2. The line for the level p = 0 in 

the vicinity of the point C consists of two pieces of orthogonal straight lines 

E, = -0.761 (E, - 4). E* - E%O = 1.314 (El - SlCj (6.4j 
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